Skip to content
Blueprint Technologies - Data information specialists
Main Menu
  • What we do

      Artificial Intelligence

      Intelligent SOP
      Generative AI
      Video analytics

      Engineering

      Application development
      Cloud & infrastructure
      Lakehouse optimization

      Data & Analytics

      Data platform modernization
      Data governance
      Data management
      Data migration
      Data science & analytics

      Strategy

      TCO planning
      Productization
      Future proofing
  • Industries

      Manufacturing

      Enhance productivity and efficiency through tailored technology solutions, optimizing processes, and drive innovation in manufacturing operations.

      Retail

      Revolutionize customer experiences through innovative technology solutions for seamless shopping journeys and enhanced retail operations.

      Health & Life Sciences

      Advance healthcare outcomes and pharmaceutical innovations through cutting-edge technology solutions and data-driven strategies.

      Financial Services

      Empower financial institutions with secure and scalable technology solutions, driving digital transformation, and personalized customer experiences.

  • Databricks

      Databricks
      Center of Excellence

      Maximize your Databricks experience with our comprehensive Center of Excellence resources and support.

      QuickStarts

      Proof-of-value projects designed to get you started quickly on Databricks.

      Accelerated Data Migration

      Regardless of the source, we specialize in migration your data to Databricks with speed and quality.

      Unity Catalog Migration

      Accelerate your UC migration and minimize errors with our meticulously tested Brickbuilder approved solution.

      Lakehouse Optimizer

      Get higher return on your investment and minimize your total cost of ownership with self-facilitated optimization.

      Accelerated Snowflake to Databricks Migration

      Unlock increased cost savings, heightened operational efficiency, and enhanced analytical capabilities. 

  • Our work
  • Insights
  • About

      Our Approach

      Discover our holistic approach to uncovering strategic opportunities.

      Careers

      Explore exciting career opportunities and join our team today.

      News

      Get the latest updates and insights about our company.

      Events

      Stay updated on upcoming events and webinars.

      Our Partners

      Get to know our trusted technology partners and collaborators.

Connect
Blueprint Technologies - Data information specialists

Stop overprocessing data

By Eric Vogelpohl

“We’re starving for data!”

This is something I regularly hear as I meet with stakeholders from companies large and small. Perhaps the most painful message came from the Director of Marketing of a large restaurant chain. We were on our second conference call when she said, with a sigh of frustration I’ll never forget, “Does this mean my team will be able to get current item data to analyze without having to request it from IT each time?”

My professional passion is being a data evangelist for people who want to make business more efficient. In today’s fast-paced world, hearing comments like that is a kick in the gut for me.

I’ve been in the data business for years. I have watched architectural patterns evolve and morph from enterprise data warehousing to operational data stores/integration hubs to logical data marts/data virtualization to big data stores and finally to ETL, ELT and Reverse-ELT.

Undoubtedly, these have been exciting times in the data business because each of those 5 data management patterns has merits in the right context. However, they fail to consider three things that often force BI and data leaders to extend their data pipelines through to successive data stores, thus overprocessing data and increasing the time needed to get data to consumers.

1 - Modern platforms are different

The world has seen a rapid rise in Software as a Service (SaaS) platforms, such as Dynamics, Workday and Salesforce, all of which have far simpler data schemas than the complex line of business and custom applications of old. Older systems stored data within a database optimized for efficiently writing data. Data reading, on the other hand, required numerous steps to extract data from tables, perform joins, flatten and convert oddly named columns names into something humans could consume.

Modern platforms require little processing to support analytics and data discovery. Indeed, many digitally native platforms have out-of-the-box integrations with leading cloud data warehouse vendors ready to deliver data directly to users.

Blueprint Technologies advocates for a fast-lane approach to pipe data from these services into a cloud-based data warehouse. The speed at which these data are delivered to analysts correlates directly to value. A data architecture should support as direct a path as possible for an organization.

2 - Modern data warehouses can scale up and down

Cloud-based data warehouses allow for utility-based scaling

In the past, the performance of a data warehouse depended on how much a company spent on compute nodes. Data warehouse and BI managers had to request and allocate capital to purchase additional compute and storage resources – often over yearly budgeting cycles. This meant there was an intense focus on curtailing query loads. One strategy was to – yet again – process data from the warehouse into data marts. These data marts held less data and were optimized for ad hoc queries.

While this was a way to protect the warehouse from uninformed users doing baseline analysis that could become costly, the data sets eventually provided to users were so overprocessed, and often only covered a short timeframe, it left little room for exploring data in any innovative way.

For cloud-based data warehouses, however, users exploring data in ad hoc or unprescribed ways have far less an impact on the system. Cloud data warehouses can scale dynamically using various techniques. There is often no need to create these secondary data marts because the compute behind a data warehouse can auto-scale up and down with a query.

Blueprint believes the modern data estate has at its heart a cloud data warehouse. As data inform decisions (or should be informing decisions) at a much greater rate, Blueprint advises clients to seriously consider the reasons driving additional data processing in a data pipeline.

3 - End users are more data savvy than you think

Historically, a single major contributor drove the need to overprocess data into secondary data marts and data cubes. BI tools (Excel Pivot, Power BI and other enterprise reporting and analytical platforms) relied on data to be in a specific format to support a click-and-drag user experience.

While that may be appropriate for a certain class of users, data managers have quickly found that employees today have the skills and access to data exploration tools that often negates the need to create these tailored data marts. Ten to 15 years ago, data needed to be overprocessed because end users didn’t know anything more than fundamental report navigation – dumping data into Excel and making pivot tables. Now though, whether a student received a degree in finance, MIS or engineering, they often understand statistics, possess SQL skills and are quite savvy with modern data tools.

Blueprint is passionate about unleashing the power of data. Overprocessing data and reducing the degrees of freedom these savvy analysts have in exploring insights and outliers for a business is an ever-greater risk to improving operations. Carefully consider the risk/reward tradeoff to overprocessing and delaying access to data.

Aim important data pipelines & processing rituals at the right areas

Certainly, it is necessary to recognize that there are valid reasons to process data thoroughly. Formal financial statements, SEC filings and other scenarios in which transactional auditing and data precision within the confines of a financial or planning data model are high on that list.

But when it comes to connecting data from many other business areas, companies should question the need to overprocess. When exploring trends about tickets from the field, it doesn’t materially change anything if the numbers are off slightly. Companies need to get over their fears of handing over raw data to their BI engineers and analysts.

Let’s start a conversation about how Blueprint can help you establish a cloud-based data estate that prioritizes getting data to users quickly, enabling data-driven business decisions in a competitive landscape.

Share with your network

You may also enjoy

Classic vs. Serverless: Exploring Databricks’ latest Innovations

Explore the benefits of Databricks’ serverless solutions, which simplify resource management, improve productivity, and optimize costs. Discover key insights and best practices to enhance your data strategy with cutting-edge serverless technologies.

Help for FinOps Leaders – How the Lakehouse Optimizer can assist with your Lakehouse 

Discover how FinOps leaders manage cloud and data costs effectively while maximizing business value. Learn how the Lakehouse Optimizer (LHO) addresses common business problems through discovery, optimization, and operation.
Blueprint Technologies - Data information specialists

What we do

  • Generative AI
  • Video analytics
  • Application development
  • Cloud and infrastructure
  • Data platform modernization
  • Data governance
  • Data management
  • Data science and analytics
  • TCO Planning 
  • Productization
  • Future Proofing
  • Intelligent SOP
  • Lakehouse Optimization
  • Data Migrations
  • Generative AI
  • Video analytics
  • Application development
  • Cloud and infrastructure
  • Data platform modernization
  • Data governance
  • Data management
  • Data science and analytics
  • TCO Planning 
  • Productization
  • Future Proofing
  • Intelligent SOP
  • Lakehouse Optimization
  • Data Migrations

Industries

  • Manufacturing
  • Retail
  • Health & Life Sciences
  • Financial Services
  • Manufacturing
  • Retail
  • Health & Life Sciences
  • Financial Services

Databricks

  • Databricks Center of Excellence
  • QuickStart Offerings
  • Accelerated Data Migration
  • Accelerated Unity Catalog Migration
  • The Lakehouse Optimizer
  • Accelerated Snowflake to Databricks Migration
  • Databricks Center of Excellence
  • QuickStart Offerings
  • Accelerated Data Migration
  • Accelerated Unity Catalog Migration
  • The Lakehouse Optimizer
  • Accelerated Snowflake to Databricks Migration

About

  • Our approach
  • News
  • Events
  • Partners
  • Careers
  • Our approach
  • News
  • Events
  • Partners
  • Careers

Insights

Our work

Support

Contact us

Linkedin Youtube Facebook Instagram

© 2024 Blueprint Technologies, LLC.
2600 116th Avenue Northeast, First Floor
Bellevue, WA 98004

All rights reserved.

Media Kit

Employer Health Plan

Privacy Notice